Статьи

Подписаться на RSS

Популярные теги Все теги

1,2 СПБ для печати

Одной из наиболее известных проблем при печати АБС пластиком является низкая адгезия полимера с столу. Если при печати ПЛА данной проблемы практически не существует, то для АБС она является чуть ли не основной.  

Кратко остановимся на физ-химии данного процесса.

Для аморфных полимеров в зависимости от температуры  возможны три физических состояния: стеклообразное, высокоэластическое и вязкотекучее. Практическое применение полимеров определяется тем, в каком из этих состояний находится данный полимер при температуре его использования.

 

Для стеклообразных полимеров характерны относительно небольшие упругие (обратимые) деформации (1-10%),причем полимерные стекла отличаются повышенной прочностью от низкомолекулярных стеклообразных тел, которые разрушаются при деформировании уже на 0,1-1%.

Высокоэластические полимеры способны обратимо деформироваться на сотни процентов. В высокоэластическом состоянии в условиях эксплуатации находятся все каучуки. Это состояние характерно лишь для полимеров.

В вязкотекучем состоянии полимер ведет себя как очень вязкая жидкость, которая под действием силы проявляет необратимую деформацию (деформацию течения). Это состояние реализуется обычно при повышенных температурах и используется для переработки полимеров в изделия.

Так вот на выходе из термоголовки АБС-пластик находится в вязкотекучем состоянии. При нанесении полимера на термостол (температура термостола 120-140º) АБС переходит в высокоэластичное состояние. В высокоэластическое состояние АБС-пластик  переходит (как и все гибкоцепные линейные полимеры) при температуре выше температуры стеклования, которая составляет ~108ºС, для АБС пластика используемого для печати на принтере. Не вникаясь далее в дебри физ-химии полимеров можно сказать следующее, хорошая (или отличная) адгезия АБС-пластика будет только на ту поверхность, которая либо переводит АБС в высокоэластичное состояние (например на нагретый термостол с термоскотчем) или же сам стол, или его поверхность находится в высокоэластичном состоянии. Последний пункт, к слову, наиболее привлекателен т.к. позволяет отказать от термостола и удешевить конструкцию принтера. Хотя использование поверхности термостола с нанесенным на него полимером в высокоэластичном состоянии уже известен [ссылка на статью со скотчем и нанесенным на него АБС], но все не позволяет отказаться от самого термостола.

Нами поставлена задача, в данной статье и в последующих, замена термостола и печать с использованием АБС на поверхности с комнатной температурой.

Основной нашей идеей является использование в качестве покрытий для печатного стола (без нагрева, разумеется) полимеров которые уже при комнатной температуре находятся в высокоэластичном состоянии.  Такие полимеры известны, более того это целый класс полимеров под названием термоэластопласты. Термоэластопласты (термопластичные эластомеры), полимерные материалы, обладающие в условиях эксплуатации высокоэластичными свойствами, характерными для эластомеров, а при повышенных температурах обратимо переходящие в пластическое или вязкотекучее состояние и перерабатывающиеся подобно термопластам [1]. Одним из таких полимеров нами апробирован синдиотактический 1,2-полибуатдиен (1,2-СПБ), с температурой стеклования -12,6ºС т.е. находящийся при комнатной температуре в высокоэластичном состоянии.  Нанесение 1,2-СПБ наносили на поверхность стекла из 5%-ного раствора в хлороформе, при комнатной температуре, толщина нанесенного слоя составляет 20-50 мкм.

Однако в «чистом» виде 1,2-СПБ не обеспечил необходимой адгезии при этом наблюдалось «утекание» 1,2-СПБ при контакте с АБС вытекающим из термоголовки. Видимо в момент контакта 1,2-СПБ с АБС на выходе из термоголовки (температура которой составляет 220-240ºС), 1,2-СПБ переходит в высокотекучее состояние при котором нанести АБС на его поверхность не представляется возможным.  

Далее наши изыскания были направлены на увеличение вязкости 1,2-СПБ с целью уменьшения его текучести при контакте с АБС. Для увеличения вязкости использовали аэросил (порошок белого цвета состоящий из частиц диоксида кремния диаметром 3-5 нм)[2], который вводили в раствор полимера непосредственно перед нанесением.


И… получилось:

По крайней мере первый слой, при нанесении последующих слоев полимер все таки становиться слишком текущим и отлипает от стекла.

К слову говоря увеличивать вязкость полимера можно не только добавлением экзотических нанонаполнителей но и банальным охлаждением. Предварительно охлажденное в морозильнике (но не ниже температуры стеклования! иначе отлипнет) стекло с 1,2-СПБ показал аналогичные результаты. Поэтому если у кого то появиться возможность заменить термостол на хладостол, то в принципе проблема решена. 

 Однако, в том виде в котором мы хотели видеть технологию печати с помощью АБС на холодной платформе, все же не существовала. Использование других марок термоэластопластов к успеху так же не привели. Набравшись негативного опыта мы задались следующим вопросом: какой существует полимер. с имеющей хорошую адгезию к стеклу и к АБС одновременно, который при этом, контактируя с выходящим из термоголовки АБС, переходил бы в высокоэластичное состояние, а не в вязкотекучее состояние. Полимерное покрытие с указанными характеристиками должен был «открыть двери» для печати на холодном столе. После долгих и упорных поисков такой полимер был найден! Причем ответом на все наши вопросы оказался ничем не примечательный пакет с белым порошком, который, к слову, благополучно валялся в нашей лаборатории несколько лет!

Им оказалась перхлорвиниловая смола – продукт дополнительного хлорирования поливинилхлорида.

В данном видео показано что можно печатать АБС и без термо стола mk2.За место него обычная фанера

Великолепная адгезия к стеклу и к горячему, и холодному АБС в купе с температурой стеклования выше 110ºС и высокая прочность пленки позволили нам реализовать свой план.

Одно без но, как всегда не обошлось, при однократном нанесении 5% раствора перхлорвиниловой смолы после высыхания, мы получали пленку толщиной 10-30 мкм (или 0,01-0,01 мм), такая пленка не выдерживает печати объектов с низкой посадочной площадью. Так при печати объекта с высотой 1,5 см и диаметром 0,5 см деталь на 3/4 высоты отклеивалась.  Данная проблема была решена с использованием более толстого слоя перхлорвиниловой смолы – 50-70 мкм (двукратное нанесение полимера). Печать  объектов с большой посадочной площадью проходила без проблем и с однократно нанесенным полимером.

 

 

 

 

 

 

Послойная заливка экструдируемым расплавом (Fused Deposition Modeling – FDM)

Идея создания процесса принадлежит Скотту Крампу (Scott Crump), который вскоре после этого изобретения, в конце 80-х, вместе со своей женой основал компанию Stratasys. Основной частью принтера, появившегося на рынке в 1991 г., является экструдирующая головка. В ней материал (литейный воск или пластик, поступающие на катушках) предварительно нагревается до температуры плавления и подается в зону печати. Головка перемещается по двум координатам, синтезируя определенный слой модели. Затем платформа опускается, создается следующий слой и т. д. В качестве плюсов FDM можно отметить: легкость перестройки с одного нетоксичного материала на другой, низкие затраты и достаточно высокую производительность, малые температуры переработки, а также минимальное вмешательство оператора в функционирование оборудования.

В то же время данная технология не лишена и недостатков: между слоями образуются швы; головка экструдера должна постоянно двигаться, иначе материал застынет и засорит ее; возможно расслоение в случае температурных колебаний в течение цикла обработки. Ориентировочная стоимость FDM-принтера 50–220 тыс. долл.